Answer:
c. V = 2 m/s
Explanation:
Using the conservation of energy:

so:
Mgh = 
where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.
Also we know that:
V = WR
Where R is the radius of the disk, so:
W = V/R
Also, the moment of inertia of the disk is equal to:
I = 
I = 
I = 10 kg*m^2
so, we can write the initial equation as:
Mgh = 
Replacing the data:
(5kg)(9.8)(0.3m) = 
solving for V:
(5kg)(9.8)(0.3m) = 
V = 2 m/s
The sum of potential energy<span> and kinetic </span><span>energy.
Hope I helped!</span>
An important difference between a universal and a split-phase motor is that the split-phase motor has
A. two brushes attached to the stator.
B. a single coil formed on the rotor.
<u>C. two windings on the stator. </u>
D. an armature with a commutator.
Answer:
a)

b)
m = 48lb
c)
b = 144.76lb
Explanation:
The general equation of a damping oscillate motion is given by:
(1)
uo: initial position
m: mass of the block
b: damping coefficient
w: angular frequency
α: initial phase
a. With the information given in the statement you replace the values of the parameters in (1). But first, you calculate the constant b by using the information about the viscous resistance force:

Then, you obtain by replacing in (1):
6in = 0.499 ft

b.
mass, m = 48lb
c.
b = 144.76 lb/s