The molarity of 10% CaCl2 is 0.9%
concentration of the given salt CaCl₂ = 10%
Density of a solution = 1.0835 g/cm³
Volume = m / d
= 100 / 1.0835
= 92.29 litres
Density = mass / volume
1.0835 × 92.29 = mass
mass = 99.99 gram
Thus the molarity can be calculated by = moles of solute / volume of solution multiplied by 100
= 0.9008/ 92.29 X 100 %
= 0.009 X 100 %
= 0.9 %
The molarity of 10% CaCl2 is 0.9%
To know more about density and molarity you may visit the link which is mentioned below:
brainly.com/question/10710093
#SPJ4
An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.
<h3>Why an egg thrown at a concrete wall will break?</h3>
An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not because the momentum and acceleration increases when the egg is thrown downward due to gravity but when we throw an egg in the vertical direction, they move against gravity so the momentum and acceleration decreases.
So we can conclude that an egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Explanation:
Given that,
Mass of aircraft = 10000 kg
Speed = 620 km/h = 172.22 m/s
Altitude = 10 km = 1000 m
We calculate the change in potential energy
For g = 10 m/s²,
The change in potential energy will be 1000 MJ.
We calculate the change in kinetic energy
For g = 10 m/s²,
The change in kinetic energy will be 150 MJ.
Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Answer:
The value of change in internal l energy of the gas = 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.
Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1