Answer:

Explanation:
Hello!
In this case, since these calorimetry problems are characterized by the fact that the calorimeter absorbs the heat released by the combustion of the substance, we can write:

Thus, given the temperature change and the total heat capacity, we obtain the following total heat of reaction:

Now, by dividing by the moles in 1.04 g of cyclopropane (42.09 g/mol) we obtain the enthalpy of combustion of this fuel:

Best regards!
Answer: An atom can be considered unstable in one of two ways. If it picks up or loses an electron, it becomes electrically charged and highly reactive. Such electrically charged atoms are known as ions. Instability can also occur in the nucleus when the number of protons and neutrons is unbalanced.
Explanation:
A. Phase changing. When phase changes nothing chemically changes about the substance, its still the same thing.
Answer:
isolated system (plural isolated systems) (physics) A system that does not interact with its surroundings. Depending on context this may mean that its total energy and/or momentum stay constant.
Explanation:
An isolated system is a thermodynamic system that cannot exchange either energy or matter outside the boundaries of the system. ... The system may be enclosed such that neither energy nor mass may enter or exit.
is there both?
<u>Answer:</u> The reactant ratio in the given chemical equation will be: 
<u>Explanation:</u>
Mole ratio is defined as the ratio of the amount of moles of two substances that are participating in a chemical reaction.
In the given chemical equation:

The reactants are Fe and
and the product is 
The mole ratio is basically the stoichiometric ratio of the chemical compounds taking part in a chemical reaction.
The mole ratio of reactants is stoichiometric ratio of Fe and
, which is:

Hence, the reactant ratio in the given chemical equation will be: 