Answer: <span>C) Soap is a surfactant that disrupts the intermolecular forces of water making the paperclip sink.</span>
Explanation:
1) This is the set of choices that comes with this question:
<span>A) Soap is a surfactant that increases the intermolecular forces of water allowing the paperclip to continue to float.</span>
<span>B) Soap makes the water less viscous making the paperclip sink.</span>
<span>C) Soap is a surfactant that disrupts the intermolecular forces of water making the paperclip sink.</span>
<span>
D) Soap makes the water more viscous allowing the paperclip to continue to float.
</span>
2) Justification:
The paperclip is denser that water, so it should sink into the water. Then, why is the paperclip floating?
The papeclip is floating due to the high surface tension of the water.
The surface tension is the force that tends to keep the molecules of a liquid together resisting the spread due to other forces (gravity for example). The surface tension is what makes that a drop of water over a table keeps round and like a hemisphere instead of spreading along all the surface of the table.
That very same force makes it possible that some insects can stand over water and is the responsible for the meniscus that you see in the thin tubes that contain water (e.g. in the test tubes in your chemistry lab).
By the way, that strong intermolecular forces that keep the molecules of water attracted to each other is due the hydrogen bonds.
The soap is a surfactant which reduces the surface tension of the water, this is it disrupts the intermolecular forces of water, and that is what the option C) tells.
        
                    
             
        
        
        
Answer:
A and B
Explanation:
 the other two make no sense at all
 
        
                    
             
        
        
        
As we move down the group, the metallic bond becomes more stable and the formation of forming covalent bond decreases down the group due to the large size of elements.
Covalent and metallic bonding leads to higher melting points. Due to a decrease in attractive forces from carbon to lead there is a drop in melting point.
Carbon forms large covalent molecules than silicon and hence has a higher melting point than silicon.
Similarly, Ge also forms a large number of covalent bonds and has a smaller size as compared to that of Sn. Hence melting point decreases from Ge to Sn.
The order will be C>Si>Ge>Pb>Sn.
To learn more about the covalent bond, visit: brainly.com/question/10777799
#SPJ4
 
        
             
        
        
        
The correct answer is c. Please give me brainlest let me know if it’s correct or not thanks bye
        
             
        
        
        
Answer and Explanation:
As the temperature of the substances increases, the average energy of the molecules increases, and average energy of attraction between the molecules decreases consequently intermolecular spacing between the molecules increases. As a result, a substance change in succession from gas to liquid to solid.