Answer:
1.47 atm
Explanation:
Step 1: Calculate the moles corresponding to 41.6 g of oxygen
The molar mass of oxygen is 32.00 g/mol.
41.6 g × 1 mol/32.00 g = 1.30 mol
Step 2: Convert 30.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15 = 30.0 + 273.15 = 303.2 K
Step 3: Calculate the pressure exerted by the oxygen
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 1.30 mol × (0.0821 atm.L/mol.L) × 303.2 K / 22.0 L = 1.47 atm
Answer:
As we read from left to right across the periodic table atomic numbers are increased by one each of element.
Explanation:
As we move from left to right across the periodic table the atomic number is increased by one and the number of valance electron in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
A species with a positive charge will have a net attraction to a species with a negative charge. Among the choices, N3- is the only one attracted to a positive charge.
Answer:
chemical change it is melted down