Force=mass*acceleration
F=ma
F=25*5
F=100 N
<h2>
Answer: 745.59 nm</h2>
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero
Now, the first-order diffraction angle is given when
, hence equation (1) becomes:
(2)
We know:
In addition we are told the diffraction grating has 750 slits per mm, this means:
Solving (2) with the known values we will find
:
(3)
(4)
Knowing
:
>>>This is the wavelength of the light, wich corresponds to red.
Weight = mg, g ≈ 9.8 m/s²
Weight = 2.2 * 9.8 ≈ 21.56 N
Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.