Answer:
Distance = 25000000 miles
Time = 50 hours
Explanation:
Venus is the closest planet to Earth. It is about 25 million miles away from Earth. Its precise distance depends on where both Venus and Earth are in their respective orbits
Given that
Speed V = 500000 mph
Distance d = 25 000,000 miles
Speed = distance/ time
Time = distance/speed
Time = 25000000/500000
Time = 50 hours
It will therefore take 50 hours to get to venus at that speed.
Transvere wave because the direction which the particles are being displaced
Hope this helps a little
initial distance up = 2
initial velocity component up = 9 sin 60 = 7.79
v = 9 sin 60 - 9.8 t
when v = 0, we are there
9.8 t = 7.79
t = .795 seconds to top
h = 2 + 7.79(.795) - 4.9(.795^2)
Answer:
31.75 m/s
Explanation:
h = 41.7 m
Let the initial velocity of the second stone is u
Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.
For first stone:
Use second equation of motion

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7
So, 41.7= 0 + 0.5 x 9.8 x t^2
41.7 = 4.9 t^2
t = 2.92 s ..... (1)
For second stone:
Use second equation of motion

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity
.... (2)
By equation the equation (1) and (2), we get

u = 31.75 m/s
Let the distance between the towns be d and the speed of the air be s.
distance = speed * time
convert the minutes time into hours.
When flying into the wind, ground speed will be air speed MINUS wind speed, hence the against the wind trip is described by:
d
s−15
=
7
3
return trip is then :
d
s+15
=
7
5
Cross-multiplying both we get the two-variable system:
3d=7∗(s−15)5d=7∗(s+15)
3d=7s−1055d=7s+105
subtract first equation from second equation we get
2d=210d=105km
Substitute the value of d in the above equations for s.
5∗105=7s+1057s=420s=60km/hr