Like a seesaw, it shows that the forces aren’t equal because if it was the seesaw would stay put
Answer:
Less than a quarter of Earth's surfaces are dry, ice free lands
To solve this problem we will apply the concepts related to the calculation of the surface, volume and error through the differentiation of the formulas given for the calculation of these values in a circle. Our values given at the beginning are


The radius then would be

And

PART A ) For the Surface Area we have that,

Deriving we have that the change in the Area is equivalent to the maximum error, therefore

Maximum error:


The relative error is that between the value of the Area and the maximum error, therefore:


PART B) For the volume we repeat the same process but now with the formula for the calculation of the volume in a sphere, so


Therefore the Maximum Error would be,



Replacing the value for the radius


And the relative Error



Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
Answer:
2.35 kgm^2
Explanation:
we take length 68.7 cm as x-axis and 47.5 cm as y-axis then the axis about which we have to find out moment of inertia will be z-axis.
moment of inertia about x-axis
kg-m2

by perpendicular axis theorem
