Answer:
16:1
Explanation:
Atoms of element X weigh 32 times more than atoms of element Y. We can write this in a symbolic way.
mX = 32 mY [1]
where,
- mX and mY are the masses of X and Y, respectively
A compound has the formula: XY₂, that is, in 1 molecule of XY₂ there is 1 atom of X and 2 atoms of Y. The ratio of the mass of X to the mass of Y in this compound equals:
mX/2 mY [2]
If we substitute [1] in [2], we get:
mX/2 mY = 32 mY/2 mY = 16 = 16:1
Answer:

Explanation:
The HF is about five million times as strong as phenol, so it will be by far the major contributor of hydronium ions. We can ignore the contribution from the phenol.
1 .Calculate the hydronium ion concentration
We can use an ICE table to organize the calculations.
HF + H₂O ⇌ H₃O⁺ + F⁻
I/mol·L⁻¹: 2.7 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 2.7 - x x x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}] \text{F}^{-}]} {\text{[HF]}} = 7.2 \times 10^{-4}\\\\\dfrac{x^{2}}{2.7 - x} = 7.2 \times 10^{-4}\\\\\text{Check for negligibility of }x\\\\\dfrac{2.7}{7.2 \times 10^{-4}} = 4000 > 400\\\\\therefore x \ll 2.7\\\dfrac{x^{2}}{2.7} = 7.2 \times 10^{-4}\\\\x^{2} = 2.7 \times 7.2 \times 10^{-4} = 1.94 \times 10^{-3}\\x = 0.0441\\\text{[H$_{3}$O$^{+}$]}= \text{x mol$\cdot$L$^{-1}$} = \text{0.0441 mol$\cdot$L$^{-1}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%20%5Ctext%7BF%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHF%5D%7D%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%20-%20x%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctext%7BCheck%20for%20negligibility%20of%20%7Dx%5C%5C%5C%5C%5Cdfrac%7B2.7%7D%7B7.2%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%204000%20%3E%20400%5C%5C%5C%5C%5Ctherefore%20x%20%5Cll%202.7%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%202.7%20%5Ctimes%207.2%20%5Ctimes%2010%5E%7B-4%7D%20%3D%201.94%20%5Ctimes%2010%5E%7B-3%7D%5C%5Cx%20%3D%200.0441%5C%5C%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%7D%3D%20%5Ctext%7Bx%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D%20%3D%20%5Ctext%7B0.0441%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D)
2. Calculate the pH
![\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.0441} = \large \boxed{\mathbf{1.36}}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.0441%7D%20%3D%20%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.36%7D%7D)
3. Calculate [C₆H₅O⁻]
C₆H₅OH + H₂O ⇌ C₆H₅O⁻ + H₃O⁺
2.7 x 0.0441

Answer:
A is the answer. Hope this helped.
The type of carbon fixation stores carbon dioxide in acid form is CAM i.e. crassulacean acid metabolism.
<h3>What are CAM?</h3>
CAM stands for crassulacean acid metabolism in this process photosynsthesis is occured at day time but the exchange of gases takes place at night itself only.
In this carbon fixation process, carbon dioxide is stored in the form of organic acid malic acid and losses carbon dioxide at the night time and by doing this it helps in the storage of water.
Hence option (C) is correct.
To know more about CAM, visit the below link:
brainly.com/question/4170802