The correct options are these:
1. It will follow the law of conservation of mass.
2.The mass of products will be equal to the mass of the reactants.
The law of conservation of mass states that ' matter can neither be created nor destroyed. Thus, if a chemical equation is balanced, the mass of the reactant at the beginning of the reaction will be equal to the mass of the product after the reaction. This shows that the chemical reaction obeys the law of conservation of mass.
Answer:
B extinction
Explanation:
as the species does not exist any more, the species is extinct, therefore making the pictured fossil of an extinct species
hope this helps
Answer: c
Explanation:
during the industrial revolution americans were switching from rural to urban life, thus using up more fossil fuels, and working in factories
Answer:
The process of photosynthesis occurs when green plants use the energy of light to convert carbon dioxide (CO2) and water (H2O) into carbohydrates. Light energy is absorbed by chlorophyll, a photosynthetic pigment of the plant, while air containing carbon dioxide and oxygen enters the plant through the leaf stomata.
Answer:
Bottom line: A redshift reveals how an object in space (star/planet/galaxy) is moving compared to us. It lets astronomers measure a distance for the most distant (and therefore oldest) objects in our universe.
Explanation:
A redshift reveals how an object is moving in space and enables astronomers to discover otherwise-invisible planets and the movements of galaxies, and to uncover the beginnings of our universe.
They use a property called a "redshift" to describe the motion of an objects moving away from each other in space. Redshift occurs when an object emitting electromagnetic radiation recedes from an observer. The light detected appears "redder" than it should be because it is shifted toward the "red" end of the spectrum.Because the location of spectral features usually shifts to longer wavelengths -- towards the red end of the spectrum -- astronomers refer to this as the redshift of a galaxy. Take a look for yourself at the appearance of some very distant, very fast-moving galaxies in the Hubble Ultra-Deep Field .
hoped this helped a brainlist would be nice :)