Position <em>' C '</em> is the middle of the swing. That's where the weight is the lowest.
It's also the place where the weight is moving the fastest, so that means it's the place where the kinetic energy is greatest.
Given Information:
Voltage of circuit A = Va = 208 Volts
Current of circuit A = Ia = 40 Amps
Voltage of circuit B = Vb = 120 Volts
Current of circuit B = Ib = 20 Amps
Required Information:
Ratio of power = Pa/Pb = ?
Answer:
Ratio of power = Pa/Pb = 52/15
Explanation:
Power can be calculated using Ohm's law
P = VI
Where V is the voltage and I is the current flowing in the circuit.
The power delivered by circuit A is
Pa = Va*Ia
Pa = 208*40
Pa = 8320 Watts
The power delivered by circuit B is
Pb = Vb*Ib
Pb = 120*20
Pb = 2400 Watts
Therefore, the ratio of the maximum power delivered by circuit A to that delivered by circuit B is
Pa/Pb = 8320/2400
Pa/Pb = 52/15
STP (Standard Temperature and Pressure) has the following conditions:
Temperature = 273.15 K = 0°C
Pressure = 101325 Pa = 101.325 KPa = 1 atm
We also know that 1 mole = 6.022x10^23 molecules
Using the ideal gas equation: PV=nRT
n/V = P/RT
molecules/V = P*6.022x10^23/RT
molecules/V = 101325 Pa (6.022x10^23 molecules/mole)/ (8.314 Pa-m3/mol-K)(273.15K)
molecules/V = 7.339x10^27 molecules/m^3 - Final answer
Answer:
10 mL= 0.01 L
Explanation:
V(water) = 20 mL
V(water + a marble) = 30 mL
V(marble) = V(water + a marble) - V(water) = 30 mL - 20 mL = 10 mL= 0.01 L
Answer:
4.1 m
Explanation:
Given :
Mass of the block = m = 2 kg.
Initial velocity =
= 8 m/s
Angle of the incline = α = 30°
Coefficient of friction = μ = 0.35
Distance moved up the incline is calculated using the work energy theorem.
Work done by the net force = change in kinetic energy of the object.
Net work = work done by friction + work done by the gravity component.
(- mg sin 30 - μ mg cos 30 ) d = 
m cancels out when divided on both sides with m.
- [(9.8 sin 30 - ( 0.35 × 9.8 × cos 30) ] d = 1/2 ( 0² - 8² )
⇒ -7.87 d = -32
⇒ Distance traveled up the incline = d = 4.0658 m = 4.1 m