I would say that there shouldn't be any calls on a plane while in-flight because you never know what someone is calling for. It can lead to a bad situation like 9/11 or any form of terrorism.
Answer:
V1 =8.1 m/s
Explanation:
height at highest point (h2) = 4.1 m
height at lowest point (h1) = 0.8 m
acceleration due to gravity (g) = 9.8 m/s^{2}
from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore
mgh1 +
= mgh2 + 
where
- speed at highest point = V2
- speed at lowest point = V1
- mass of the girl and swing = m
- at the highest point, the speed is minimum (V1 = 0)
- at the lowest point the speed is maximum (V2 is the maximum speed)
- therefore the equation becomes mgh1 +
= mgh2
m(gh1 +
) = m(gh2)
gh1 +
= gh2
V1 = 
now we can substitute all required values into the equation above.
V1 = 
V1 = 
V1 =8.1 m/s
Answer:
u/2 √(1 + 3 cos² θ)
Explanation:
The object is thrown at an angle θ, so the velocity has two components, vertical and horizontal.
Initially, the vertical component is u sin θ and the horizontal component is u cos θ.
At the maximum height, the vertical component is 0 and the horizontal component is u cos θ.
The mean vertical velocity is:
(u sin θ + 0) / 2 = u/2 sin θ
The mean horizontal velocity is:
(u cos θ + u cos θ) / 2 = u cos θ
The net mean velocity can be found with Pythagorean theorem:
v² = (u/2 sin θ)² + (u cos θ)²
v² = u²/4 sin² θ + u² cos² θ
v² = u²/4 (1 − cos² θ) + u² cos² θ
v² = u²/4 (1 − cos² θ) + u²/4 (4 cos² θ)
v² = u²/4 (1 − cos² θ + 4 cos² θ)
v² = u²/4 (1 + 3 cos² θ)
v = u/2 √(1 + 3 cos² θ)
Answer:
The Titius–Bode law (sometimes termed just Bode's law) is a hypothesis that the bodies in some orbital systems, including the Sun's, orbit at semi-major axes in a function of planetary sequence. The formula suggests that, extending outward, each planet would be approximately twice as far from the Sun as the one before.
Explanation:
Answer:
v = 2.89 m / s
Explanation:
This is a kinematics exercise, the centripetal acceleration is
a = v² / r
where a is the acceleration, v is the velocity and r the radius
let's clear
v = √a r
let's calculate
v = √ (27 0.31)
v = 2.89 m / s
this is the speed of the drum which is constant