Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field
Answer:
Time dilation. Time dilation, in the theory of special relativity, the “slowing down” of a clock as determined by an observer who is in relative motion with respect to that clock.The world's most accurate clock has neatly shown how right Albert Einstein was 100 years ago, when he proposed that time is a relative concept and the higher you live above sea level the faster you should age. Einstein's theory of relativity states that time and space are not as constant as everyday life would suggest.The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to other forces of nature.
Explanation:
When it has been proven by science to be true.
The formula for accelerational displacement is at^2/2, so we know that 3.9t^2/2 = 200, or 3.9t^2 = 400. t =

, at = v, so