Answer:
Explanation:
We shall apply Ampere's circuital law to find out magnetic field . It is given as follows.
∫B.dl = μ₀ I , B is magnetic field , I is current , μ₀ is permeability .
Radius of the wire r = 1.2 x 10⁻³ m
magnetic field B will be circular in shape around the wire. If B is uniform
∫B.dl = B x 2πr
B x 2πr = μ₀ I
B = μ₀ I / 2πr
= 4π x 10⁻⁷ x 37 /2πx1.2 x 10⁻³
= 10⁻⁷ x 2x37 / 1.2 x 10⁻³
= 61.67 x 10⁻⁴ T
= 62 x 10⁻⁴ T
Answer:
Explanation:
is the magnetic quantum number.
The only possible value for the magnetic quantum number for an electron in an s orbital is 0.
The first three quantun numbers are:
- n: principal quantum number. It may have positive integer values: 1, 2, 3, 4,5, 6, 7, ...
: Azimuthal or angular momentum quantum number. It may have integer values from 0 to n - 1.
This quantum number is related to the type (or shape) of the orbital:
For s orbitals
For p orbitals
For d orbitals
For f orbitals
In this case, it is an s orbital, so we have
.
, the third quantum number can have integer values
to 
Since, for the s orbitals
, the only possible value for
is zero.
Answer: The balance of oxygen and carbondioxide is made due to respreration and photosinthesis. As we leave carbon dioxide and take in oxygen the ballance of carbon dioxide and oxygen is made. And during the photosinthesis of plants the balance of carbon dioxide and oxygen is made.
Yes, an increase in temperature is accompanied by an increase in pressure. Temperature is the measurement of heat present and more heat means more energy. Molecules in hotter temperatures move faster and more often, eventually moving into the gaseous phase. The molecules would fill the container, and the hotter it got the more they would bounce off the walls, pushing outward, increasing the pressure.
I suppose you could measure this with some kind of loosely inflated balloon and subject it to different temperatures and then somehow measure the size/pressure of it.
<span>When a magnet moves near a wire, it's changing field causes the electrons in the wire to flow as electric current.</span>