Glucose.... have a nice day
Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

During that final period of time,
his acceleration is
(9 m/s - 5 m/s) / (4 sec) = 1 m/s² .
Did you have a question to ask ?
Because they behave just like all the electromagnetic waves of the spectrum. Same equations, just shorter wavelengths and more energy.
Hope you get it :)
Answer:
Fr = 48 [N] forward.
Explanation:
Suppose the movement is on the X axis, in this way we have the force of the engine that produces the movement to the right, while the force produced by the brake causes the vehicle to decrease its speed in this way the sign must be negative.
∑F = Fr
![F_{engine}-F_{brake} =F_{r}\\F_{r}=79-31\\F_{r}=48[N]](https://tex.z-dn.net/?f=F_%7Bengine%7D-F_%7Bbrake%7D%20%3DF_%7Br%7D%5C%5CF_%7Br%7D%3D79-31%5C%5CF_%7Br%7D%3D48%5BN%5D)
The movement remains forward, since the force produced by the movement is greater than the braking force.