Answer:
Im not sure about Q1 but I'll help with Q2
9 =

8 =
![\sqrt[3]{512}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B512%7D%20)
14 =

2 =
![\sqrt[3]{8}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B8%7D%20)
4 =

<u>I</u><u> </u><u>h</u><u>o</u><u>p</u><u>e</u><u> </u><u>t</u><u>h</u><u>i</u><u>s</u><u> </u><u>h</u><u>e</u><u>l</u><u>p</u><u>s</u><u> </u><u>:</u><u>)</u>
<u>I</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>w</u><u>o</u><u>u</u><u>l</u><u>d</u><u> </u><u>l</u><u>i</u><u>k</u><u>e</u><u> </u><u>m</u><u>e</u><u> </u><u>t</u><u>o</u><u>,</u><u> </u><u>i</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>r</u><u>e</u><u>s</u><u>p</u><u>e</u><u>c</u><u>t</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u> </u><u>w</u><u>i</u><u>s</u><u>h</u><u>e</u><u>s</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>d</u><u>e</u><u>l</u><u>e</u><u>t</u><u>e</u><u> </u><u>m</u><u>y</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>.</u>
B. It would be 5/2 and -3/4.
Answer:
[C] 25π square inches
Step-by-step explanation:
<u><em>Given that:</em></u>
<em>the long hand of the clock is about 5 inches long.</em>
<u><em>To Find:</em></u>
<em>What is the approximate area of the clock face?</em>
<u><em>Solve:</em></u>
<em>Formula - </em><em>A =πr²</em>
<em>Note that;</em>
<em>π = 3.14 (about)</em>
<em>Radius - 5 inches</em>
<em>A =πr²</em>
<em>A = 3.14(5)²</em>
<em>A = 3.14(25)</em>
<em>A = 78.5</em>
<em>Now let see the answer choices:</em>
<em>A. 5π square inches ≈ 5(3.14) = 15.7</em>
<em>B. 10 π square inches ≈ 10(3.14) = 31.4</em>
<em>C. 25 π square inches ≈ 25(3.14) = 78.5</em>
<em>D. 100 π square inches ≈ 100(3.14) = 314</em>
<em />
<em>Hence, the answer is [C] 25 π square inches </em>
<em />
<u><em>Kavinsky~</em></u>
Answer:
d. (x+2)/(-x²-5)
Step-by-step explanation
ƒ(x) = x + 2/(2x²)
The function is undefined when x = 0.
b. ƒ(x) = (2x + 4)/(3x + 3)
The function is undefined when 3x + 3 = 0, i.e., when x = -1.
c. ƒ(x) = (6x - 5)/(x² - 7)
The function is undefined when x² - 7 = 0, i.e., when x = √7.
d. ƒ(x) = (x+2)/(-x²-5) = -(x+2)/(x² + 5)
The function would be undefined if x² + 5 = 0, i.e., if x² = -5. However, the square of a real number cannot be negative.
This function has no excluded values.