Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
Answer:
<em>a. The cart's acceleration is 2 m/s^2</em>
<em>b. The cart will travel 100 m</em>
<em>c. The speed is 20 m/s</em>
Explanation:
a. The acceleration of the cart can be calculated using Newton's second law:
F = m.a
Solving for a:

The cart has a mass of m=15 Kg and is applied a net force of F=30 N, thus:


b.
Now we use kinematics to find the distance and speed:

The cart starts from rest (vo=0). The distance traveled in t=10 seconds is:


The cart will travel 100 m
c.
The final speed is calculated by:

The speed is 20 m/s
A Headland,a Sea Cave,a Sea Arch, and a sea cut cliff.
Acceleration = (velocity final-velocity initial)/ time
where
velocity final = 135 km/hr x 1 hr /3600 s x 1000m/1km
= 37.5 m/s
velocity initial = 35 km/hr x 1hr /3600 s x 1000 m/1 km
= 9.72 m/s
a) acceleration = 2.646 m/s^2
b) acceleration in g units = (2.646m/s^2)/(9.8m/s^2)
= 0.27 units
The fraction of the tensile strength which is the stress on the femur is 1.4%.
<h3>What is Tensile strength?</h3>
This is defined as the amount of load or stress that a material can handle before it stretches and breaks.
The femur which is located in the thigh is the largest bone in the body and it exerts a fraction of 1.4% tensile strength through the stress encountered on the femur when the man stands with one leg.
Read more about Tensile strength here brainly.com/question/25748369