Answer:
x = 2.044 m
Explanation:
given data
initial vertical component of velocity = Vy = 2sin18
initial horizontal component of velocity = Vx = 2cos18
distance from the ground yo = 5m
ground distance y = 0
from equation of motion


solving for t
t = 1.075 sec
for horizontal motion

x = 2cos18*1.075
x = 2.044 m
Rocks, earth aging, fossils
Explanation:
Given that,
Angle by the normal to the slip α= 60°
Angle by the slip direction with the tensile axis β= 35°
Shear stress = 6.2 MPa
Applied stress = 12 MPa
We need to calculate the shear stress applied at the slip plane
Using formula of shear stress

Put the value into the formula


Since, the shear stress applied at the slip plane is less than the critical resolved shear stress
So, The crystal will not yield.
Now, We need to calculate the applied stress necessary for the crystal to yield
Using formula of stress

Put the value into the formula


Hence, This is the required solution.
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>