Answer:
I₁ = 0.32 A
I₂ = 0.16 A
I₃ = 0.16 A
I₄ = 0.16 A
Explanation:
Part A
The equivalent resistance of the circuit is
Req = R₁ + (R₂||(R₃ + R₄))
Req = 15 + (45||(20 + 25))
Req = 15 + (45||45) = 15 + ((45×45)/(45+45)) = 15 + 22.5 = 37.5 Ω
Part B
From Ohm's law,
V = IR
Ieq = V/(Req) = 12/(37.5) = 0.32 A
Part C
Current through R₁ is the same as Ieq as R₁ is directly in series with the voltage source.
I₁ = 0.32 A
Then, this current flows through the (R₂||(R₃ + R₄)) loop too as the entire loop is in series with R₁
This current is them split into two branches of R₂ and (R₃ + R₄), since these two branches have equal resistances (45 Ω and 45 Ω), 0.32 A is split equally between the R₂ and (R₃ + R₄) branch.
Current through R₂ (using current divider)
I₂ = (45/90) × 0.32 = 0.16 A
Current through (R₃ + R₄) = 0.16 A too.
And because the two resistors are in series, the same current flows through them.
I₃ = I₄ = 0.16 A