Answer:
1/i + 1/o = 1/f thin lens equation
i = 33 * 8.9 / (33 - 8.9) = 12.2 cm to right of first lens
27 - 12.2 = 14.8 cm to left of second lens
i = 14.8 * 8.9 / (14.8 - 8.9) = 22,3 cm to right of second lens
Answer:
d = 142.5 m
Explanation:
This is a vector exercise. Let's calculate how much the boat travels in the 40s
d₀ =
t
d₀ = 0.75 40
d₀ = 30 m
Let's write the kinematic equations
Boat
x = d₀ +
t
x = 0 +
t
At the meeting point the coordinate is the same for both
d₀ +
t =
t
t (
-
) = d₀
t = d₀ / (
-
)
The two go in the same direction therefore the speeds have the same sign
t = 30 / (0.95-0.775)
t = 150 s
The distance traveled by man is
d =
t
d = 0.95 150
d = 142.5 m
Answer:
The length of the incline is 3.504 meters.
Explanation:
Let suppose that Julietta's ball decelerates uniformly, then we determine the length of the incline is determined by the following equation of motion:
(Eq. 1)
Where:
- Length of the incline, measured in meters.
- Initial speed of the ball, measured in meters per second.
- Aceleration of the ball, measured in meters per square second.
- Time, measured in second.
If we know that
,
and
, then the length of the incline is:


The length of the incline is 3.504 meters.
Answer:
Coefficient of static friction = 0.37
Explanation:
At the point the the quoll slides, quoll attains its maximum velocity.
So Ne = (mv^2)/r ....equa 1
And N =mg....equ 2
Where N vertical force of qoull acting on the surface, e = coefficient of friction, m=mass, g=9.8m/s^2, r =radius =1.6m, v= max velocity of quill = 2.4m/s
Sub equ 2 into equ 1
Mge= (mv^2)/r ...equa3
Simplfy equ3
e = v^2/(gr)...equ 4
Sub figures above
e = 5.76/(9.8*1.6)
e = 0.37
To find the solution to the problem, we would be using Planck's equation which is E = hv
Where:
E = energy
h = Planck's constant = 6.626 x 10-34 J·s
ν = frequency
Then, you’ll need a second equation which is c = λν
Where:
c = speed of light = 3 x 108 m/sec
λ = wavelength
ν = frequency
Reorder the equation to solve for frequency:ν = c/λ
Next, substitute frequency in the first equation with c/λ to get a formula you can use:
E = hν
E = hc/λ
But we are looking for the wavelength, so rearrange it more, then our final equation would be:
λ = hc / E
λ = (6.625E-34)(3.0E8 m/s) / (1.06E-13)
λ = 1.875E-12 m