Let the mass of the solute be x
So, the equation would be
x/2.5+x ×100 = 23.22
x/2.5+x = 23.22/100
100x = 58.05 + 23.22x
100x - 23.22x = 58.05
76.78x = 58.05
x =0.756 ≈ 0.76 litres
Answer:
the equilibrium constant is 1.8 x 10⁻5 and strongly favor the reactants.
Explanation:
the chemical reaction provided for the two equation are the same but different direction i.e a reversible reaction. Assuming, the mass of reactants and product and temperature remain constant.
therefore, the equilibrium constant K, is 1.8 x 10⁻5. this is a very small value of K, thereby strongly favor the backward direction to form reactant.
A type of electromagnetic radiation would be electromagnetic waves
Answer:
The three major types of bond are ionic, polar covalent, and covalent bonds. Ionic occurs majorly between metals and non-metals, which allows sharing of electrons to form an ionic compound. Whereas covalent bonding calls for complete transfer of electrons between atoms. Polar covalent bonds have unequaly shared electron-pair between two atoms.
Explanation:
a. Cu (Copper)-<em> ionic bonding
</em>
b. KCl (Potassium Chloride)
- <em>ionic bonding
</em>
c. Si (Silicon)
- <em>covalent bonding
</em>
d. CdTe (Cadmium Telluride)
- <em>polar covalent bonding
</em>
e. ZnTe (Zinc Telluride)- <em>polar covalent bonding
</em>
Answer:
The compound with the correct formula is;
A. MNO₃
Explanation:
The number of oxidation states in the metal, M = One oxidation state
The formula of the compound formed by the metal, M = MHCO₃
We note that the ion HCO₃⁻, known as hydrogen carbonate has an oxidation number of -1
Similarly nitrate, NO₃⁻ has an oxidation number of -1, therefore, the metal M can form similar compound formed with HCO₃⁻ with nitrate, and we have;
The possible compounds formed by the metal 'M' includes MHCO₃ and MNO₃.