Answer:
The number of protons also determines the identity of the element. ... Since the atom is electrically neutral, the number of electrons must equal the number of protons.
Answer:
It is always less than the theoretical yield
Explanation:
For many chemical reactions, the actual yield is usually less than the theoretical yield. This is due to possible loss in the process or inefficiency of the chemical reaction.
The scheme is shown below, the steps involved are as follow,
Step one: Reduction: The carbonyl group of given compound on reduction using
Wolf Kishner reagent converts the carbonyl group into -CH₂- group.
Step two: Epoxidation: The double bond present in starting compound when treated with
m-CPBA (<span>meta-Chloroperoxybenzoic acid) gives corrsponding epoxide.
Step three: Reduction: The epoxide is reduced to alcohol on treatment with
Lithium Aluminium Hydride (LiAlH</span>₄)<span> followed by hydrolysis.
Step four: Oxidation: The hydroxyl group (alcohol) is
oxidized to carbonyl (ketonic group) using oxidizing agent
Chromic acid (H</span>₂CrO₄).
The correct answer is
Energy of electrons depends on light’s frequency, not intensity.
As per photoelectric effect, if we incident a light on metal surface it will results into emission of electron from it
if we increase the number of photons the number of electrons will increase however if we increase the frequency the number of photons will not increase
While if we increase frequency the energy of electrons will increase as
Energy of photon = Work function of metal + kinetic energy of electrons
<span>The number next to the simbol of the element ions (as a superscript) means the number of charges of the ion. For example N (+),, where (+) is a superscript means that the charge of the ion is 1+. S(2-), where (2-) is a superscript, means that the charge of the ion is (2-). OH (-), where (-) is a superscript, means that the charge of OH ion is (1-) . </span>