Answer:
79.04 L
Explanation:
We are given;
Initial Volume; V1 = 6.24L
Initial Pressure; P1 = 760 mm Hg
Final pressure; P2 = 60.0mm Hg
To solve for final volume, we will use Boyles law;
P1•V1 = P2•V2
Let's make V2 which is the final volume the subject;
V2 = (P1•V1)/P2
V2 = (760 × 6.24)/60
V2 = 79.04 L
Wax is susceptible to heat. Wax is responds to heat addition. The forces in the wax when heat is added are being broken off and are much lesser as its original state. Hope this answers the question. Have a nice day.<span />
The molecular formula for compound is
mass of compound is 0.670 g.
To calculate number of atoms first calculate number of moles in the compound as follows:

Molar mass of
is 283.886 g/mol, thus,

Thus, number of mole of
is 0.00236 mol.
From the molecular formula 1 mole of
has 2 mol of P (phosphorus) and 5 mol of O (oxygen).
Thus, number of moles of P and O in 0.00236 mol of
will be:

Similarly,

Now, in 1 mol of an element there are
atoms.
Number of atoms of P will be:

Similarly, number of atoms of O will be:

Total number of atoms will be sum of number of atoms of P and O:

Therefore, total number of atoms in
will be
.
Number 1 is incorrect, the genotypes are given to you. You need to use GG and gg. The outcome would be 100% Gg.
Number 2 is incorrect, the genotypes are given to you. You need to use Gg and Gg. The outcome would be 25% gg, 25% GG, and 50% Gg.
Number 3 is incorrect, the genotypes are given to you. You need to use TT and tt. The outcome would be 100% Tt.
Number 4 is incorrect, the genotypes are given to you. You need to use RR and rr. The outcome would be 100% Rr.
Please read the directions and use the genotypes they give you! The information is all there for you, you just need to put it in correctly. If you're still having trouble understanding how to do this, feel free to message me and I'd be happy to help you.
Answer: 1) Temperature can change the solubility of a solute.
Explanation:
The chart is missing so there is no way to tell what does the graph show.
Yet, I can help you because I can explain the status of each statement of the choices. As you will see there is only one possibility..
<span>1) Temperature can change the solubility of a solute.
Yes, temperature definetly can, and mostly do, modify the solubility of a solute.
You can search any chart of solubility and will find that.
I can give you two examples:
a) Sodium chloride: dissolve some spoons of salt in a cold water until you can not dissolve more. Then, heat the water, you will find that more salt will get dissolved, proving that the temperature of the solution increases the solubility of sodium chloride.
b) Carbon dioxide gas: the soft drinks have CO₂ molecules dissolved in it.
The higher the temperature of the soft drink the less the amount of CO₂(g) that can be dissolved. That is why the soda bottling plants cool the beverage before adding the CO₂(g).
2) </span><span>Temperature has no affect on the solubility of a solute.
Since this is the opposite to the first statement and the first is true, this is false.
3) Salt has a greater solubility than sugar.
False.
This is an empirical result, which you cannot predict theoretically. So you need to see at the data either in a table or in a chart. Else you can test it at home. After the empirical data are shown it results that more grams of sugar can be dissolved in water compared to salt.
That is something you ca see in a chart or you can prove by yourself.
4) Nitrite salt has a greater solubility than sugar.
</span>
False.
Looking at some data you can find that sodium nitrite solutiliby is aroun 70 - 100 g/10 g while sugar (sucrose) solutiblity is around 180 - 235 g/ 100 g.