Answer:
No, its not possible for water to dissolve almost anything in the universe.
Explanation:
Solubility of a solute defines the ability of that solute to dissolve in a given solvent. It is defined as the maximum amount of solute dissolved in a solvent at equilibrium. The solution which results from dissolving this maximum amount is called a saturated solution, and one it has been reached, no more solute can be dissolved in it.
Different substances in the universe have diffferent solubilities in water, some very high (soluble) (eg. sugar and salt) and some very low (insoluble) (eg plastics). The substances that are able to form bonds with water (Hydrogen or Ionic) are more soluble than those who are not able to do so.
Answer:
Explanation:
from the ideal gas law we have
PV = mRT
HERE R is gas constant for dry air = 287 J K^{-1} kg^{-1}
We know by ideal gas law
for m_2
WE KNOW
PV = mRT
V, R and T are constant therefore we have
P is directly proportional to mass
The Kepler's laws predict the planetary motion, so there are three laws for this, namely:
1. The orbit of a planet is an ellipse with the Sun (the sun is a star!) at one of the two focus.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.
So, let's use second law. The Sun sweeps out equal areas during equal intervals of time means that if A = B, the time the planet takes to travel A1A2 is equal to the time the planet takes to travel B1B2, but given that A = 2B, then takes twice the time to travel A1A2 compared to B1B2.
Answer:
C. 98 J
Explanation:
The appropriate formula is ...
PE = mgh . . . . . m is mass; below, m is meters
PE = (5 kg)(9.8 m/s^2)(2 m) = 98 kg·m^2/s^2
PE = 98 J