Answer:
The correct option is;
C. 1,715 m
Explanation:
We are given the information from the group of teen at the City edge
Time of arrival of explosion sound = 5 s after sighting
Time of sighting explosion = 5 s before hearing the boom
Speed of sound in air ≈ 343 m/s
Speed of light = 299,792 km/s
Therefore, distance covered by sound in 5 seconds is given by the following equation;


Hence Distance = 343 m/s × 5 s = 1715 m
To check, we compare the time it would take for the light to cover 1715 m
That is
which is instantaneous hence the distance can be approximated by the time duration for the speed of sound.
Therefore, the distance of the students from the factory is approximately 1,715 m
Answer:
Q at the center of the distribution.
Explanation:
- The Gauss's law is the law that relates to the distribution of electrical charges to the resulting electrical field. It states that a flux of electricity outside the arabatory closed surface is proportional to the electricitical harg enclosed by the surface.
Answer:
t = 1.42 s and d = 35.5 m
Explanation:
Given that,
Velocity of a roadrunner is 25 m/s
A certain coyote wants to capture the roadrunner using a net dropped from an overpass that is 10 m high.
We need to find the time before the roadrunner is under the overpass and how far away from the overpass is the roadrunner when the coyote drops the net.

Let d is the distance traveled. So,
d = vt
d = 25 m/s × 1.42 s
d = 35.5 m
In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.