Answer:
Volume of the sample: approximately
.
Average density of the sample: approximately
.
Assumption:
.
.- Volume of the cord is negligible.
Explanation:
<h3>Total volume of the sample</h3>
The size of the buoyant force is equal to
.
That's also equal to the weight (weight,
) of water that the object displaces. To find the mass of water displaced from its weight, divide weight with
.
.
Assume that the density of water is
. To the volume of water displaced from its mass, divide mass with density
.
.
Assume that the volume of the cord is negligible. Since the sample is fully-immersed in water, its volume should be the same as the volume of water it displaces.
.
<h3>Average Density of the sample</h3>
Average density is equal to mass over volume.
To find the mass of the sample from its weight, divide with
.
.
The volume of the sample is found in the previous part.
Divide mass with volume to find the average density.
.
The type of heat that the Sun emits is called UV (Ultra Violet) rays. This is a natural type of heat, but it can also be dangerous if you expose yourself to too much UV heat, causing "sunburns", or even skin cancer.
Answer:
Explanation:
Given

mass of core
Average specific heat 
And rate of increase of temperature =
Now
P=

Thus ![\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7DT%7D%7B%5Cmathrm%7Bd%7D%20t%7D%3D%5Btex%5D%5Cfrac%7B1.60%5Ctimes%2010%5E5%5Ctimes%200.3349%7D%7B150%5Ctimes%2010%5E6%7D)
