Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Answer:
92.81 psia.
Explanation:
The density of water by multiplying its specific gravity by the density of sea water.
SG = density of sea water/density of water
ρ = SG x ρw
1 kg/m3 = 62.4 lbm/ft^3
= 1.03 * 62.4
= 64.27lbm/ft^3.
The absolute pressure at 175 ft below sea level as this is the location of the submarine.
P = Patm +ρgh
= 14.7 + 64.27 * 32.2 * 175
Converting to pound force square inch,
= 14.7 + 64.27 * (32.2ft/s^2) * (175ft) * (1lbf/32.2lbm⋅ft/s^2) * (1ft^2/144in^2 )
= 14.7 + 78.11 psia
= 92.81 psia.
Answer:

Yes it is better to pull the rope rather than push it
Explanation:
Let the force is applied at an angle of 60 degree
so we will have net vertical force on the crate is given as

here we know




now friction force on the crate is given as




Yes it is better to pull the rope rather than push it
Gravitational force is the result of the earth pulling down on the book, so the normal force is best described as the earth or more accurately the table pushing up on the book