155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).
A sample of nitrogen gas has a volume of 5.0 ml at a pressure of 1.50 atm. what is the pressure exerted by the gas if the volume increases to 30.0 ml, at constant temperature is 0.25atm.
On constant temperature, the pressure and volume relation become constant before and after the change in quantitities have occurred.
According to Boyle's Law,
P₁V₁ = P₂V₂
where, P₁ is pressure exerted by the gas initially
V₁ is the volume of gas initially
P₂ is pressure exerted by the gas finally
V₂ is the volume of gas finally
Given,
P₁ = 1.5 atm
V₁ = 5 ml
V₂ = 30 ml
P₂ =?
On substituting the given values in the above equation:
P₁V₁ = P₂V₂
1.5 atm × 5 ml = P₂ × 30 ml
P₂ = 0.25 atm
Hence, pressure exerted by the gas is 0.25atm.
Learn more about Boyle's Law here, brainly.com/question/1437490
#SPJ4
Answer:
The kaleidoscope
Explanation:
gives a number of images formed by reflection from the mirrors inclined to one another. Designers and artists use kaleidoscope to get ideas for new patterns to design wallpapers, jewellery and fabrics.