Answer:
Velocity of Pauli relative to Daniel = (-1.50ï + 3.90ĵ) m/s
x-component = -1.50 m/s
y-component = 3.90 m/s
Explanation:
Relative velocity of a body A relative to another body B, Vab, is given as
Vab = Va - Vb
where
Va = Relative velocity of body A with respect to another third body or frame of reference C
Vb = Relative velocity of body B with respect to that same third body or frame of reference C.
So, relative velocity can be given further as
Vab = Vac - Vbc
Velocity of Newton relative to Daniel = Vnd = 3.90 m/s due north = (3.90ĵ) m/s in vector form.
Velocity of Newton relative to Pauli = Vnp = 1.50 m/s due East = (1.50î) m/s in vector form
What is Pauli's velocity relative to Daniel?
Vpd = Vp - Vd
(Pauli's velocity relative to Daniel) = (Pauli's velocity relative to Newton) - (Daniel's velocity relative to Newton)
Vpd = Vpn - Vdn
Vpn = -Vnp = -(1.50î) m/s
Vdn = -Vnd = -(3.90ĵ) m/s
Vpd = -1.50î - (-3.90ĵ)
Velocity of Pauli relative to Daniel = (-1.50ï + 3.90ĵ) m/s
Hope this Helps!!!!
The answer is voluntary involvement! :D Welcome
10% energy is transferred from the prey to eagle and 90% energy is lost in the enviorment .
Answer:
The velocity must change but not speed.
Explanation:
- Velocity is defined as the displacement by time. Whereas speed is expressed as the distance between two successive positions of the body to the time interval it took to travel.
<em>Velocity, V = D / t m/s</em>
<em> Speed, s = d /t m/s </em>
- Velocity is a vector quantity that has a magnitude and direction.
- The speed is a scalar quantity having only the magnitude.
- At any instant of time, the magnitude of the velocity is always equal to the magnitude of the speed. The magnitude of velocity, |<em>v </em>| = magnitude of speed, |<em>v </em>|. The magnitude is always positive
- The acceleration of a body is defined as the rate of change of velocity to time.
<em> a = (v - u) / t m/s²</em>
- If a body is accelerating, It varies its velocity with respect to time.
- In case of uniform circular motion, the speed remains constant, but the velocity changes continuously.
So, in the case of circular motion if an object accelerates, velocity must change but speed remains constant.
Answer:
12m/s
Explanation:
v^2=u^2+2as
v=?
u=0 (the dish was stationary before it fell)
a=9.81 m/s^2 (acceleration due to gravity/freefall)
s=1.5m (the drop height)
So: v^2=0+2.9.81.1.5 = 144.35415
and therefore v=sqrt 144.35415
12x12=144 so I'd say v=12m/s