Torque = r x F
|F| = mg = 60 * 10 N = 600 N ( assuming g ~ 10m/s^2)
distance of fulcrum = torque / Force = 90/600 m = .15 m.
My guess would be choice D
<h2>The work done = - 2 x 10⁴ J</h2>
Explanation:
In the first case , the volume is kept constant and pressure varies .
In isothermal process , the work done
W₁ = V x ΔP
here V is the volume of gas and ΔP is the change in pressure
Thus W₁ = 0
Because there is no change in volume , therefore displacement is zero .
In second case pressure is constant , but volume changes
Thus W₂ = P x ΔV
here P is the pressure and ΔV is the change in volume
Therefore W₂ = 4 x 10⁵ x 5 x 10⁻² = 2 x 10⁴ J
The total work done W = - 2 x 10⁴ J
Because the work done in compression is negative .
Answer:
Explanation:
The relation between time period of moon in the orbit around a planet can be given by the following relation .
T² = 4 π² R³ / GM
G is gravitational constant , M is mass of the planet , R is radius of the orbit and T is time period of the moon .
Substituting the values in the equation
(.3189 x 24 x 60 x 60 s)² = 4 x 3.14² x ( 9380 x 10³)³ / (6.67 x 10⁻¹¹ x M)
759.167 x 10⁶ = 8.25 x 10²⁰ x 39.43 / (6.67 x 10⁻¹¹ x M )
M = .06424 x 10²⁵
= 6.4 x 10²³ kg .