Answer:
The beam of light is moving at the peed of:
km/min
Given:
Distance from the isalnd, d = 3 km
No. of revolutions per minute, n = 4
Solution:
Angular velocity, (1)
Now, in the right angle in the given fig.:
Now, differentiating both the sides w.r.t t:
Applying chain rule:
Now, using and y = 1 in the above eqn, we get:
Also, using eqn (1),
The popular GPS devices that people use to find directions while driving use "Global Navigation Satellite System (GNSS)".
<u>Explanation:</u>
The umbrella term for all global satellite tracking systems is GNSS i.e Global Satellite Navigation System. This involves satellite constellations circulating over the surface of the earth and continuous signal transmission that allow users to evaluate their location.
A satellite array of 18–30 medium Earth Orbit (MEO) satellites distributed across several orbital planes typically achieves greater coverage for each network. The specific systems differ, but use > 50 ° orbital inclinations and approximately twelve hours orbital cycles.
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are
where is the initial velocity.
(a).
When the projectile hits the 50m mark, ; therefore,
solving for we get:
Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that
which gives
(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,
the vertical component of the velocity is
which gives a speed of
The igneous rocks which were deposited on the surface and then cooled are known as extrusive. These rocks are a result of a magma reaching the surface of the Earth which cools the magma quickly. Examples are rhyolite, basalt, obsidian and andesite.