Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>
Answer:
C. The mass of an electron is much less than the mass of a proton or
a neutron.
Explanation:
When we compare the mass of an electron to that of proton or neutron, the mass of an electron is much less than the mass of a proton or a neutron.
Electrons are negatively charged particles in an atom
Protons are positively charged particles
Neutrons do not carry any charges.
- The relative mass of an electron compared to that of a proton is
- This is a very small value
- Electrons generally have mass of 9.11 x 10⁻³¹kg
- Protons weigh 1.67 x 10⁻²⁷kg
- Neutrons weigh 1.68 x 10⁻²⁷kg
We can see that electrons have very small mass and this is why when calculating the mass of an atom, we use the sum of the number of protons and neutrons.
Answer:
Explanation:
Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space.
Fe(s) + CuSO4(aq) -> Cu(s) + FeSO4(aq) is the answer if you get it in advance...
The correct answer is this one: "The amount of energy before and after the explosion depends on the type of reaction." The energy involved in an explosion is that t<span>he amount of energy before and after the explosion depends on the type of reaction, how strong and how weak; how destructive or less destructive.</span>