Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
Answer:
Please refer to the figure.
Explanation:
The magnitude of the magnetic field can be found by Biot-Savart Law. We should divide the loop into four components. Each component has a similar solution but their directions are quite different.
The directions can be found by right-hand rule. Point your index finger into the direction of current, point your middle finger towards the target point (0,0,a). Your thumb will show you the direction of magnetic field.
Answer:
psychology has to do with the mind and brain while social science has to do with the scientific study if human relationships
Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle