Answer:
Two objects will have the equal velocities but the forces on both of them will not be equal. The equal velocities of these objects are due to their equal acceleration.
Explanation:
From the newton's equation

so here we can say that velocity does not depends on the mass.
The acceleration of both objects will be same but not the forces because
F = Ma
As the force is depending on the mass so it will not be the same for both objects.
Answer:
655128 ohm
Explanation:
C = Capacitance of the capacitor = 7.8 x 10⁻⁶ F
V₀ = Voltage of the battery = 9 Volts
V = Potential difference across the battery after time "t" = 4.20 Volts
t = time interval = 3.21 sec
T = Time constant
R = resistance
Potential difference across the battery after time "t" is given as
T = 5.11 sec
Time constant is given as
T = RC
5.11 = (7.8 x 10⁻⁶) R
R = 655128 ohm
When an item is raised, the work is done in opposition to gravity. When an item is worked on, energy is transmitted to it, and it develops gravitational potential energy. If the same thing falls from that height, gravity must do the same amount of effort to bring it back to the Earth's surface.
This question is so vague as to render it useless.
I suspect the answer they're looking for is Kepler advanced Copernicus's work as is stated. but the way science works is that anyone who has contributed will have their work built on. for example, Newton advanced Kepler's work on the elliptical path of planets as Einstein advanced Newton's work.
<span>We know that an object in moving with acceleration follow the rule according that
the distance covered will be : d = Vi*t + 1/2*a*t^2
where d is distance, Vi is initial speed, and a is acceleration
Then after 1 km which is 1000 metres we have:
1000 = Vi *71.2 + 1/2*0.0499*(71.2)^2
Vi = (1000-1/2*0.0499*(71.2)^2)/71.2 = 1000/71.2 - 1/2*0.0499*71.2 = 12.27 m/s
Then the car was going at 12.27 m/s when started to accelerate.</span>