Answer:
90
Explanation:
The mass number of the missing daughter nuclei can be obtained as shown in the attached photo.
Answer:
Energy due to air resistance = 31.8 Joules
Explanation:
According to the law of conservation of energy, energy can neither be created nor destroyed but can be transformed from one form to another
Kinetic Energy + Energy due to air resistance = Potential energy..........(1)
If there is no energy loss due to air resistance, potential energy = kinetic energy
mass, m = 1.5 kg
height, h = 4.0 m
speed, v = 6 m/s
Kinetic energy = 0.5 mv²
Kinetic energy = 0.5 * 1.5 * 6²
Kinetic energy = 27 Joules
Potential Energy = mgh
Potential energy = 1.5 * 9.8 * 4
Potential energy = 58.8 Joules
From equation (1)
27 + Energy due to air resistance = 58.8
Energy due to air resistance = 58.8 - 27
Energy due to air resistance = 31.8 Joules
Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.

C a meter stick with only centimeters
D a ruler with millimeters and centimeters
D would be to the nearest half milimeter. Take some time to measure with a 2 inch ruler. Would you really need to know the length to half a mil ?
Answer: 39.8 μC
Explanation:
The magnitude of the electric field generated by a capacitor is given by:

d is the distance between the plates.
For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.

where A is the area of the plate and ε₀ is the absolute permittivity.
substituting, we get

It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.
radius of the plates of the capacitor, r = 69 cm = 0.69 m
Area of the plates, A = πr² = 1.5 m²
Thus, the maximum charge that can be placed on disks without a spark is:
Q = E×ε₀×A
⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.