Answer:
Initial velocity = 10 m/s
θ = 60°
This is the case of projectile motion
So the horizontal component of velocity 10 m/s = 10 cosθ
u = 10 cosθ
u = 10 cos 60°
u=5 m/s
x= 5 m
So in the horizontal direction
x = u .t
5 = 5 .t
t = 1 sec The vertical component of velocity 10 m/s = 10 sinθ
Vo= 10 sinθ
Vo= 10 sin 60°
Vo = 8.66 m/s
h=3.75 m
So height of robot = 3.75 - 0.75 m
height of robot =3 m
In an open system such as a campfire, matter can lose particles, gain particles or exchange particles.
Answer:
I = (1.80 × 10⁻¹⁰) A
Explanation:
From Biot Savart's law, the magnetic field formula is given as
B = (μ₀I)/(2πr)
B = magnetic field = (1.0 × 10⁻¹⁵) T
μ₀ = magnetic constant = (4π × 10⁻⁷) H/m
r = 3.6 cm = 0.036 m
(1.0 × 10⁻¹⁵) = (4π × 10⁻⁷ × I)/(2π × 0.036)
4π × 10⁻⁷ × I = 1.0 × 10⁻¹⁵ × 2π × 0.036
I = (1.80 × 10⁻¹⁰) A
Hope this Helps!!!
Average Velocity=Total Distance/Total Time


Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin