Answer:
73325J
Explanation:
Given parameters:
Mass of water = 0.5kg
Initial temperature = 30°C
Final temperature = 65°C
Specific heat capacity = 4190J/kg°C
Unknown:
Amount of energy absorbed = ?
Solution:
The amount of energy absorbed can be derived using the expression below;
H = m c Δt
H is the amount of energy
m is the mass
c is the specific heat
Δt is the change in temperature
H = 0.5 x 4190 x (65 - 30 )
H = 73325J
Answer:
(a) The initial speed required is 13116 m/s
(b) The escape speed is 10394 m/s
This problem involves the application of newtons laws of gravitation. The forces in action here are conservative and as a result mechanical energy is conserved.
The full calculation can be found in the attachment below.
Explanation:
In both parts (a) and (b) the energy conservation equation were used. Assumption was made that when the object is very far from the planet the distance from the planet's center approaches infinity and the gravitational potential energy approaches zero.
The calculation can be found below.
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
I just solved similar type of question. You can refer to my solution which I have attached