Answer:
40m/s
Explanation:
The horizontal component of velocity remains constant because there are no external forces in that direction
By applying motion equations, V= U+ at
where ,
- v - final velocity
- u - initial velocity
- a-acceleration
- t - time
v = u +at
As no force act on the ball ( we neglect air resistance here) no acceleration is seen,
So v = u = 40m/s
Answer:
Acceleration = 4 m/s²
Explanation:
Given the following data;
Force = 8 N
Mass = 2 kg
To find the acceleration of the block;
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Substituting into the formula, we have;
Acceleration = 4 m/s²
This question is poorly stated, but I assume you mean what conditions are needed. It would have to be cold outside, correct?
When red light illuminates a grating with 7000 lines per centimeter, its second maximum is at 62.4°. What is the wavelength of this light?
ans: 633nm
Sum of all forces = mass * acceleration
Ft= tension force
Fw= force of gravity (Fw= mass* acceleration of gravity which is 9.8 this only applies to force of gravity)
Ft- Fw = 0 (there is no acceleration)
Ft = Fw
Ft= m*g
Ft= 0.250kg*9.8m/s
Ft= 2.45N