Answer:
(3) 53°
Explanation:
We want to measure the angle that the rains form with the vertical wind shield, so we have to measure the angle relative to the vertical. This means that we can write the following equation

where
is the speed of the rain, which travels vertically
is the speed of the bus, which travels horizontally
Substituting, we find

Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Answer:
solar eclipse mostly occurs when the moon gets between Earth and the sun, and the moon casts a shadow over Earth. A solar eclipse can only take place at the phase of new moon, when the moon passes directly between the sun and Earth and its shadows fall upon Earth's surface.
Answer:
a. 78 degree
Explanation:
According to Snell's Law, we have:
(ni)(Sin θi) = (nr)(Sin θr)
where,
ni = Refractive index of medium on which light is incident
ni = Refractive index of ethyl alcohol = 1.361
nr = Refractive index of medium from which light is refracted
nr = Refractive index of ethyl alcohol = 1.333
θi = Angle of Incidence
θr = Angle of refraction
So, the Angle of Incidence is know as the Critical Angle (θc), when the refracted angle becomes 90°. This is the case of total internal reflection. That is:
θi = θc
when, θr = 90°
Therefore, Snell's Law becomes:
(1.361)(Sin θc) = (1.333)(Sin 90°)
Sin θc = 1.333/1.361
θc = Sin⁻¹ (0.9794)
θc = 78.35° = 78° (Approximately)
Therefore, correct answer will be:
a. <u>78 degree</u>