Answer:
Ionization potential of C⁺⁵ is 489.6 eV.
Wavelength of the transition from n=3 to n=2 is 1.83 x 10⁻⁸ m.
Explanation:
The ionization potential of hydrogen like atoms is given by the relation :
.....(1)
Here <em>E</em> is ionization potential, <em>Z</em> is atomic number and <em>n</em> is the principal quantum number which represents the state of the atom.
In this problem, the ionization potential of Carbon atom is to determine.
So, substitute 6 for <em>Z</em> and 1 for <em>n</em> in the equation (1).

<em> E = </em>489.6 eV
The wavelength (λ) of the photon due to the transition of electrons in Hydrogen like atom is given by the relation :
......(2)
R is Rydberg constant, n₁ and n₂ are the transition states of the atom.
Substitute 6 for Z, 2 for n₁, 3 for n₂ and 1.09 x 10⁷ m⁻¹ for R in equation (2).
![\frac{1}{\lambda} =1.09\times10^{7} \times6^{2}[\frac{1}{2 ^{2}}-\frac{1}{3 ^{2} }]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D1.09%5Ctimes10%5E%7B7%7D%20%5Ctimes6%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B2%20%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B3%20%5E%7B2%7D%20%7D%5D)
= 5.45 x 10⁷
λ = 1.83 x 10⁻⁸ m
Im not sure if this is physics or mathematics. but if 300 msec then per minute this will equal to 300 X 60 sec =18000 m per minute
Answer:
The value of total energy needed per minute for the humidifier = 77.78 KJ
Explanation:
Total energy per minute the humidifier required = Energy required to heat water to boiling point) + Energy required to convert liquid water into vapor at the boiling point) ----- (1)
Specific heat of water = 4190 
The heat of vaporization is = 2256 
Mass = 0.030 kg
Energy needed to heat water to boiling point = 
Energy needed to heat water to boiling point = 0.030 × 4.19 × (100 - 20)
Energy (
) = 10.08 KJ
Energy needed to convert liquid water into vapor at the boiling point
= 0.030 × 2256 = 67.68 KJ
Thus the total energy needed E =
+ 
E = 10.08 + 67.68
E = 77.78 KJ
This is the value of total energy needed per minute for the humidifier.
Answer: 216.2 J
Explanation: The heat energy of copper is the expressed in Q=mc∆T. First make sure that the mass 0.0693 kg is converted into grams to cancel both units.
Q= 69.3 g x 390 J/g°C x 26 °C-18°C = 216.2J
Answer:
shadow length 7.67 cm
Explanation:
given data:
refractive index of water is 1.33
by snell's law we have


solving for



from shadow- stick traingle


s = 19tan22 = 7.67 cm
s = shadow length