Answer:
m v^2 / R = G M m / R^2 gravitational attraction = centripetal force
M = v^2 R / G solving for M
period = 6 h 25 min = (6 * 3600 + 25 * 60) sec = 23,100 sec = T
v = 2 pi R / T
M = 4 pi^2 R^3 / (G T^2)
M = 39.5 * (8.6E7)^3 / (6.67E-11 * 2.31E4^2)
M = 39.5 * 636 / (6.67 * 5.34) * 10^24
M = 7.05 * 10^26 kg
Answer:
9.88 milivolt
Explanation:
Given: diameter d = 5.2 cm
magnetic field B_1 = 1.35 T, final magnetic field B_2 =0 T
t = 0.29 sec.
we know emf = - dΦ/dt
and flux Φ = BA
A= area
therefore emf ε = -A(B_2-B_1)/Δt

Each dot represents a valence electron. Valence electrons are the electron on the outer electron shell of an atom.<span>
</span>
Answer:
a)27.3N
b)150.78N
Explanation:
Having in mind the conservation of energy, as the monkey goes up (gaining potential gravitational energy) the kinetic energy must be reduced, so reducing the velocity of the monkey. So the maximum velocity will be at this lower point with a velocity of 1.36m/s
From this velocity and the radius we can calculate the angular velocity for the monkey center of mass:

with this we can calculate the centripetal force magnitude:

On the mokey center of mass we have two opposite forces acting, the tension of the arm and the weight, in order for the monkey to continue swinging the resolt of this two forces must be equal to the centripetal force:


Answer:
7 Newton
Explanation:
Dado
Longitud de la cuerda = 50 m
El cable se dobla en 0,058 m.
Masa de roedor = 350 gramos = 0,35 kg
T = m * a + m × v2 / r
Sustituyendo los valores dados obtenemos
T = 0,35 (10 + 10)
T = 0,35 * 20
T = 7 Newton