Well if you didn't you could make mistakes, which would lead ,in the best case, at a fail of the circuit , or if it goes out of control it could be dangerous
for example you have to know that the wires become hot and they loose their abbilitys as connecters(the hotter it will, the more energy you lose becouse the R will be bigger)
Matter, substance. Material howya call it.
Considering that we are talking about a stepdown transformer, and a turn ration of 1:24
Then
Vsecondary coil = 120 V / 24 = 5V
(But lets remember that the power must be conserved in the transformer, so the voltage is 24 times less, but the current is 24 times higher)
It provides 5 volts to operate the player or charge the batteries
Answer:
The deceleration is 0.18 m/s²
Explanation:
Hi there!
Using Newton´s second law, we can calculate the deceleration:
∑F = m · a
Where:
∑F = the sum of all forces in a given direction.
m = mass of the object.
a = acceleration.
Solving for a:
∑F/m = a
The only force acting on the meteor is the applied force of 8.6 N. So, the acceleration will be:
8.6 N / 48.9 kg = a
a = 0.18 m/s²
The deceleration is 0.18 m/s² or, in other words, the acceleration is -0.18 m/s²
Have a nice day!
Answer:
F_B = 6.4*10^-13 N
Explanation:
The magnetic force on the electron, generated by the motion of the electron and the magnetic field is given by:

q: electron charge = 1.6*10^{-19}C
v: speed of the electron = 2.0*10^6 m/s
B: magnitude of the magnetic field = 2T
However, the direction of B and v are perpendicular between them. So, the angle between vectors is 90°. The magnitude of the magnetic force is:

You replace the values of q, v and B in the last equation:

hence, the magnetic force on the electron is 6.4*10^-23 N