Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
Answer: Gases have three characteristic properties: (1) they are easy to compress, (2) they expand to fill their containers, and (3) they occupy far more space than the liquids or solids from which they form. An internal combustion engine provides a good example of the ease with which gases can be compressed.
Explanation:
Well, there you have a very important principle wrapped up in that question.
There's actually no such thing as a real, actual amount of potential energy.
There's only potential <em><u>relative to some place</u></em>. It's the work you have to do
to lift the object from that reference place to wherever it is now. It's also
the kinetic energy the object would have if it fell down to the reference place
from where it is now.
Here's the formula for potential energy: PE = (mass) x (gravity) x (<em><u>height</u></em><u>)</u> .
So naturally, when you use that formula, you need to decide "height above what ?"
If you're reading a book while you're flying in a passenger jet, the book's PE is
(M x G x 0 meters) relative to your lap, (M x G x 1 meter) relative to the floor of the
plane, (M x G x 10,000 meters) relative to the ground, and maybe (M x G x 25,000 meters)
relative to the bottom of the ocean.
Let's say that gravity is 9.8 m/s² .
Then a 4kg block sitting on the floor has (39.2 x 0 meters) PE relative to the floor
it's sitting on, also (39.2 x 3 meters) relative to the floor that's one floor downstairs,
also (39.2 x 30 meters) relative to 10 floors downstairs, and if it's on the top floor of
the Amoco/Aon Center in Chicago, maybe (39.2 x 345 meters) relative to the floor
in the coffee shop that's off the lobby on the ground floor.
Answer:
Distance = 85.3 miles
displacement = 0
Explanation:
The total distance covered to grandma's house is 42.6 miles as recorded by the odometer. The same distance would be covered when returning to the base. Hence;
Total distance for the round trip = 42.6 + 42.6 = 85.2 miles
Since the trip was a round trip, the displacement is zero because the family returned to their initial location.