Answer:
Final speed of boat + man is 1.66 m/s
Explanation:
As we know that there is no friction on the system or there is no external force on this system
So here we can use momentum conservation here
so we have
m = 85 kg
M = 135 kg
v = 4.30 m/s
now we have
<span>The side of the worm that faces up when placed in the
tray for dissection is the smoother side.
</span>You can observe the organs of these tiny creatures by dissecting a preserved earthworm<span>. In dissecting
a worm, </span><span>lay the worm on your </span>dissecting
tray<span> <span>with its dorsal side facing up.</span></span>
C. You’re welcome
Leave a like
The horizontal component of the magnetic field is 12.6 μT.
The magnetic influence on moving electric currents, electric charges, and magnetic materials is described by a magnetic field, which is a vector field. When a charge moves through a magnetic field, a force that is perpendicular to both its own velocity and the magnetic field operates on it.
The horizontal component of the Earth's magnetic field is perpendicular to the axis of a circular coil with five turns and a diameter of D = 30.0 cm that is vertically orientated.
A coil current of I = 0.600 A causes a horizontal compass to deflect 45.0° from magnetic north when it is positioned in the coil's center.
Let B be the magnetic field and R be the radius of the circular coil.
Then the horizontal component of the Earth's magnetic field is given as:
B(h) = B(coil) = μ₀ NI / 2R
B(h) = (4π × 10⁻⁷ ) (5)(0.6) / 0.3
B(h) = 12.6 μT
Learn more about magnetic field here:
brainly.com/question/14411049
#SPJ4
Answer:
d = 61.75 m
Explanation:
Given that,
A ball droped from a building.
We need to find how fast is it traveling after falling 3.55 s.
As it is dropped, its initial velocity is equal to 0.
Let d is the distance it covers after falling 3.55 s.
We can use second equation of motion to find d.
Here, u = 0 and a =g
So, it will cover 61.75 m after falling 3.55 seconds.