The correct answer would be A. Energy is released.
Hope this helps! :)
2.999 is the amount of moles
The empirical formula of the compound is C. NiF₂.
<em>Step 1</em>. Calculate the <em>moles of each element</em>
The empirical formula is the simplest whole-number ratio of atoms in a compound.
The ratio of atoms is the same as the ratio of moles.
So, our job is to calculate the molar ratio of Ni to F.
Moles of Ni = 9.11 g Ni × (1 mol Ni /(58.69 g Ni) = 0.1552 mol Ni
Moles of F = 5.89 g F × (1 mol F/19.00 g F) = 0.3100 mol F
<em>Step 2</em>. Calculate the <em>molar ratio</em> of the elements
Divide each number by the smallest number of moles
Ni:F = 0.1552:0.3100 = 1:1.997 ≈ 1:2
<em>Step 3</em>: Write the <em>empirical formula</em>
EF = NiF₂
Answer:
Increases, remain constant
Explanation:
In the light spectrum, the photons with a higher frequency (hence smaller wavelengths) have higher energy. The lower the energy the lower the frequency and longer the wavelengths. The intensity of light does not change the energy levels of these photons. The higher the intensity the higher the density of the photoelectrons.
Answer:
O.
Explanation:
- The element which is oxidized is the element that losses electrons and its oxidation state be more positive.
- The element which is reduced is the element that gain electrons and its oxidation state be more negative.
<em> O goes from 0 to -2, so, it is the element that is reduced.</em>