1. Nickel (II) Bromide
2. Iron (II) Oxide
3. Iron (III) Oxide
4. Tin (IV) Chloride
5. Lead (IV) tetrachloride
6. Tin (II) Bromide
7. Chromium (III) Phosphide
8. Iron (II) Fluoride
9. Gold (III) Chloride
I hope this helps. I'm more than 100% sure that all the answers except for number 7 are correct. I knew all of them off the top of my head except for this one. I hope the other answer has the correct answer for that one. Good luck and have a great day.
Answer:
147.2g
Explanation:
The full solution can be found in the image attached. Graham's law was applied to the problem. The rate of diffusion of a gas is inversely proportional to its molar mass or vapour density. Molar mass= 2vapour density
Answer:
Explanation:
6CO₂ + 6 H₂O ⇄ C₆H₁₂0₆ + 6O₂
This is the chemical equation given .
1. The equation shows a __Chemical equation_______the breaking and forming of chemical bonds that leads to a change in the composition of matter.
2. In the equation, CO₂ is a___reactant_____.
3. In the equation, C₆H₁₂0₆ is a ___product________.
4. In O₂, the type of bond that holds the two oxygen atoms together is a_nonpolar_covalent bond_________.
5. In H₂O, the type of bond that holds one of the hydrogen atoms to the oxygen atom is a__polar_hydrogen bond____.
6. The number of oxygen atoms on the left side of the equation is__equal to_________ the number of oxygen atoms on the right side.
Answer:
Federal, State, Municipal and County
Explanation:
A decentralized system of crime laboratories currently exists in the United States under the auspices of various governmental agencies at the federal, state, municipal and county levels of government.
Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.

In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
![[H^{+}]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D)
=

= 0.001

The change in Concentration Δ
![[CH_{3}COOH]](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D)
= 0.001

CH3COOH H+ CH3COOH
Initial

0 0
Change

-0.001 +0.001 +0.001
Equilibrium

- 0.001 0.001 0.001
Since the

value is so small, the assumption
![[CH_{3}COOH]_{initial} = [CH_{3}COOH]_{equilibrium}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D_%7Binitial%7D%20%3D%20%5BCH_%7B3%7DCOOH%5D_%7Bequilibrium%7D)
can be made.
![k_{a} = [tex]= 1.8*10^{-5} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{0.001^{2}}{x}](https://tex.z-dn.net/?f=%20k_%7Ba%7D%20%3D%20%5Btex%5D%3D%201.8%2A10%5E%7B-5%7D%20%20%3D%20%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D%20%3D%20%20%5Cfrac%7B0.001%5E%7B2%7D%7D%7Bx%7D%20)
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!