Answer:
0.35 V
Explanation:
(a) Standard reduction potentials
<u> E°/V</u>
Fe²⁺ + 2e- ⇌ Fe; -0.41
Cr³⁺ + 3e⁻ ⇌ Cr; -0.74
(b) Standard cell potential
<u> E°/V</u>
2Cr³⁺ + 6e⁻ ⇌ 2Cr; +0.74
<u>3Fe ⇌ 3Fe²⁺ + 6e-; </u> <u>-0.41
</u>
2Cr³⁺ + 3Fe ⇌ 2Cr + 3Fe²⁺; +0.33
3. Cell potential
2Cr³⁺(0.75 mol·L⁻¹) + 6e⁻ ⇌ 2Cr
<u>3Fe ⇌ 3Fe²⁺(0.25 mol·L⁻¹) + 6e-
</u>
2Cr³⁺(0.75 mol·L⁻¹) + 3Fe ⇌ 2Cr + 3Fe²⁺(0.25 mol·L⁻¹)
The concentrations are not 1 mol·L⁻¹, so we must use the Nernst equation

(a) Data
E° = 0.33 V
R = 8.314 J·K⁻¹mol⁻¹
T = 298 K
z = 6
F = 96 485 C/mol
(b) Calculations:
![Q = \dfrac{\text{[Fe}^{2+}]^{3}}{ \text{[Cr}^{3+}]^{2}} = \dfrac{0.25^{3}}{ 0.75^{2}} =\dfrac{0.0156}{0.562} = 0.0278\\\\E = 0.33 - \left (\dfrac{8.314 \times 298}{6 \times 96485}\right ) \ln(0.0278)\\\\=0.33 -0.00428 \times (-3.58) = 0.33 + 0.0153 = \textbf{0.35 V}\\\text{The cell potential is }\large\boxed{\textbf{0.35 V}}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BFe%7D%5E%7B2%2B%7D%5D%5E%7B3%7D%7D%7B%20%5Ctext%7B%5BCr%7D%5E%7B3%2B%7D%5D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B0.25%5E%7B3%7D%7D%7B%200.75%5E%7B2%7D%7D%20%3D%5Cdfrac%7B0.0156%7D%7B0.562%7D%20%3D%200.0278%5C%5C%5C%5CE%20%3D%200.33%20-%20%5Cleft%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B6%20%5Ctimes%2096485%7D%5Cright%20%29%20%5Cln%280.0278%29%5C%5C%5C%5C%3D0.33%20-0.00428%20%5Ctimes%20%28-3.58%29%20%3D%200.33%20%2B%200.0153%20%3D%20%5Ctextbf%7B0.35%20V%7D%5C%5C%5Ctext%7BThe%20cell%20potential%20is%20%7D%5Clarge%5Cboxed%7B%5Ctextbf%7B0.35%20V%7D%7D)
There are a lot of separation processes. To name a few, these can be distillation, centrifugation, extraction, membrane or sorption process and many other. To know which is the best technique, you should know the property between two substances that have a stark difference. In this case, it is the polarity. Ethyl alcohol is more polar than ethyl ester and less dense. Thus, these two won't mix. So, take advantage of their density difference by decantation or centrifugation.
The Law of Conservation of Mass states that the mass of reactants entering a reaction must be equal to the mass of the products exiting it. In this case, we only have 2 reactants, Fe and S, and we only have 1 product, FeS. Therefore we expect the total mass of the Fe and S reactants to equal the mass of FeS. This gives us 112 g + 64 g = 176 g of FeS, which is choice D.