<span>Total mass = 3.64 + 2.87 + 4.13 = 10.64 g
Mass percent of NH4Cl = (mass of NH4Cl/ Total mass) x 100 = (2.87 g/10.64g) x 100 = 27.0 % mass of NH4Cl</span>
Taking into account the definition of calorimetry, 0.0185 moles of water are required.
<h3>Calorimetry</h3>
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is defined as the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
So, the equation that allows to calculate heat exchanges is:
Q = c× m× ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
<h3>Mass of water required</h3>
In this case, you know:
Heat= 92.048 kJ
Mass of water = ?
Initial temperature of water= 34 ºC
Final temperature of water= 100 ºC
Specific heat of water = 4.186
Replacing in the expression to calculate heat exchanges:
92.048 kJ = 4.186 × m× (100 °C -34 °C)
92.048 kJ = 4.186 × m× 66 °C
m= 92.048 kJ ÷ (4.186 × 66 °C)
<u><em>m= 0.333 grams</em></u>
<h3>Moles of water required</h3>
Being the molar mass of water 18 , that is, the amount of mass that a substance contains in one mole, the moles of water required can be calculated as:
In order to prepare 200.0 mL of an aqueous solution of iron (III) chloride, at a concentration of 1.25 x 10⁻² M, you need to weight 0.4055 g of FeCl₃ and add to 200.0 mL of water.