Answer:
33 g.
Explanation:
Hello there!
In this case, for these particle-mole-mass relationships problems, it is necessary for us to recall the following equivalence statement, based off the molar mass of the involved compound, C3H8, one mole of particles and the Avogadro's number:

In such a way, we can set up the following expression for the calculation of the mass in the given particles of propane:

Best regards!
Answer:
[NH₃] → 3.24 M
Explanation:
Our solute: Ammonia
Our solvent: Water
Solution's mass = Mass of solute + Mass of solvent
Solution's mass = 15 g + 250 g = 265g
We use density to determine, the volume.
D = mass /volume → Volume = m / D → 265 g /0.974 g/mL = 272.07 mL.
We convert the mL to L → 272.07 mL . 1L /1000mL = 0.27207 L
To determine molarity we need the moles of solute in 1 L of solution.
Moles of solute are: 15g / 17g/mol = 0.882 moles
[NH₃] = 0.882mol /0.27207 L → 3.24 M
Answer:
Molar mass = 99 g/mol
Explanation:
Phosgene contains carbon, oxygen and chlorine atoms. Its molecular formular is; COCl2
The molar mass is given as the sum off the individual atomic mass of the elements in the compound.
Molar mass = C + O + 2Cl
Molar mass = 12 + 16 + 2(35.5)
Molar mass = 99 g/mol
Answer:
3 to 4 days is how long you can keep cooked beef in the refrigerator
Answer:
D. The amount of heat required to increase the temperature of 1 g of a substance by 1 °C.
Explanation:
Specific heat is defined as the amount of heat needed to raise a unit of mass of a compound by one degree on the temperature scale.
The gram is constituted as a unit of mass, and the degree Celsius as a unit of temperature, therefore, the specific heat can be defined as the amount of heat required to increase the temperature of 1 g of a substance by 1 °C.