Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
Mass, what its made out of, and atomic number
The chemical reaction is written as:
2Zn + O2 = 2ZnO
We are given the amount of the product to be produced from the reaction. We use this value and the relation of the substances in the reaction to calculate what is asked. We do as follows:
2.10 g ZnO ( 1 mol / 81.408 g ) ( 1 mol O2 / 2 mol ZnO ) ( 32 g / 1 mol ) = 0.414 g O2 is needed
Dilution refers to decreasing the ratio of total solution to the reference solution by the addition of other liquids. By adding water to tomato soup, the balance of “tomato soup” molecules decreases from 100% tomato soup, to eventually 1:1 TS and Water (50%), and so on. Chemically, you can observe this as decreasing the concentration of tomato soup in this solution.
4. I meter
5. 0.453 kilometers
6. 89.84700 microns
7. Yo momma