They are called Cargo Shorts.
Answer:
0.0305mol
Explanation:
CaCO3 ---> CaO + CO2
Mass of CaCO3 mol = 40 + 12 + (16 x 3) = 100g/mol
Number of CaCO3 moles heated = 3.05/100 = 0.0305 mol
One CaCO3 mol produces 1 mol CO2
Therefore 0.0305mol of CO2 produced.
Answer:
Explanation:
We have in this question the equilibrium
X ( g ) + Y ( g ) ⇆ Z ( g )
With the equilibrium contant Kp = pZ/(pX x pY)
The moment we change the concentration of Y, we are changing effectively the partial pressure of Y since pressure and concentration are directly proportional
pV = nRT ⇒ p = nRT/V and n/V is molarity.
Therefore we can calculate the reaction quotient Q
Qp = pZ/(pX x pY) = 1/ 1 x 0.5 atm = 2
Since Qp is greater than Kp the system proceeds from right to left.
We could also arrive to the same conclusion by applying LeChatelier´s principle which states that any disturbance in the equilibrium, the system will react in such a way to counteract the change to restore the equilibrium. Therefore, by having reduced the pressure of Y the system will react favoring the reactants side increasing some of the y pressure until restoring the equilibrium Kp = 1.
So, unlike red giants, red supergiants are simply bright, red stars. It so happens that they may be in the same evolutionary state, but it is also possible that they have moved on. For example, most massive stars will appear as red supergiants while helium is fused into carbon in the core.
hope this helps you !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
plzmark me as brainlies
Once for the water and once for the copper. Set up a table that accounts for each of the variables you know, and then identify the ones you need to obtain. Give me a moment or two and I will work this out for you.
Okay, so like I said before, you will need to use the equation twice. Now, keep in mind that when the copper is placed in the water (the hot into the cold), there is a transfer of heat. This heat transfer is measured in Joules (J). So, the energy that the water gains is the same energy that the copper loses. This means that for your two equations, they can be set equal to each other, but the copper equation will have a negative sign in front to account for the energy it's losing to the water.
When set equal to each other, the equations should resemble something like this:
(cmΔt)H20 = -(cmΔt)Cu
(Cu is copper).
Remember, Δt is the final temperature minus the initial temperature (T2-T1). We are trying to find T2. Since we are submerging the copper into the water, we can assume that the final temperature at equilibrium is the same for both the copper and the water. At a thermodynamic equilibrium, there is no heat transfer because both materials are at the same temperature.
T2Cu = T2H20
Now, the algebra for this part of the problem is a bit confusing, so make sure you keep track of your variables. If done right, the algebra should work out so you have this:
T2 = ((cmT1)Cu + (cmT1)H20) / ((cm)H20 + (cm)Cu)
Insert the values for the variables. Once you plug and chug, your final answer should be
26.8 degrees Celsius.