Answer:
- <u><em>Yes, 200 ml of fluid can be transferred to a 1-quart container.</em></u>
Explanation:
You must compare the two volumes, 200 ml and 1 quart. If 200 ml is less than or equal to 1 quart, then 200 ml of fluid can be transferred to a 1-quart container, else it is not possible.
To compare, the two volumes must be on the same system of units.
Quarts is a measure of volume equivalent to 1/4 of gallon.
One gallon is approximately 3.785 liters.
3.785 liter = 3.785 liter × 1,000 ml/liter
Then, to convert 1 quart to ml use the unit cancellation method:
- (1/4)gallon × 3.785 liter/gallon × 1,000ml / liter = 946.25 ml
Thus, you get that a 1-quart container has volume of 946.25 ml, which allows that 200ml of fluid be transferred to it.
We are given an equation 2Mg+O2-> 2MgO and a starting chemical Mg of about 212 g. In order to solve for the amount of O2 needed, we need the molecular weight of Mg and O2.
Molecular weight:
Mg=24.305 g/mol
O2=16(2)=32 g/mol
Note that for every 1 mol of O2, the amount of Mg must be 2 mol.
So,
g O2 = 212 g Mg x1mo Mgl/24.305 g Mg x1mol O2 /2 mol Mg x 32 g O2/mol O2
gO2=139.56 g
Therefore, 139.56 g of O2 is needed for every 212 g Mg.
Answer:
The correct answer is control group.
Explanation:
A group used in a study or in an experiment, which does not get treatment by the scientists and is used as a foundation to determine the functions of the other tested subjects is known as the control group. The control group is only found in an experimental investigation.
The group in an experiment, which gets the variable being examined is known as an experimental group. The comparison of an experimental group is done with a control group in order to find the answers in an experiment.
The answer is (1) 1.3 M. The first thing you need to do is to convert the unit of gram to mole. The mol number of LiF is 52/26=2 mol. Then using the volume to calculate the molarity: molarity=2/1.5=1.3 M.