Following reaction arise between Br2 and Cl2
Br2 + Cl2 → 2BrCl
(1mole) (1mole) (2moles)
From above balanced reaction, it can be seen that 1 mole of Br2 reacts with 1 mole of Cl2 to form 2 mole of BrCl
Thus, when <span>2.74 mol Cl2 reacts with excess Br2, 2.74 X 2 = 5.48 moles of BrCl will be formed. </span>
Answer:
Normality N = 0.2 N
Explanation:
Normality is the number of gram of equivalent of solute divided of volume of solution, where the number of gram of equivalent of solute is weight of the solute divided by the equivalent weight.
Normality is represented by N.
Mathematically, we have :

Given that:
number of gram of equivalent of solute = 90 milliequivalents 90 × 10⁻³ equivalent
volume of solution (HCl) = 450 mL 450 × 10⁻³ L

Normality N = 0.2 N
Calcium is used to isolate Rb from molten RbX because calcium has a smaller atomic radius than rubidium.
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. Atomic radii are typically measured in a chemically bound condition since it is challenging to isolated individual atoms in order to measure their radii individually.
Learn more about atomic radius here:
brainly.com/question/13607061
#SPJ4
So to put them all in the same units we have
<span>2500 mL </span>
<span>250 mL </span>
<span>25mL </span>
<span>2,500,000,000mL </span>
<span>So the third one is the smallest</span>
Answer:
The correct answer is option false.
Explanation:
Molality of the solution defined as moles of substance present in 1 kilogram of solvent.
Moles = 

Mass of percent (w/w%) of the solution is defined as amount of solute present in 100 grams of solution.

So, if want to inter-convert molality into mass percent we can do that without knowing density of solution.
Mass of solution = Mass of solute + Mass of solvent