Answer:
Preserving natural resources such as farmland, parks, open spaces and unused land is one way to reduce urban sprawl. Preserving the land keeps it as is. Thus, wildlife and animals aren't removed from their homes and forced closer to cities and suburbs
Answer:
V₂ = 16.5 L
Explanation:
To solve this problem we use <em>Avogadro's law, </em>which applies when temperature and pressure remain constant:
V₁/n₁ = V₂/n₂
In this case, V₁ is 22.0 L, n₁ is [mol CO + mol NO], V₂ is our unknown, and n₂ is [mol CO₂ + mol N₂].
- n₁ = mol CO + mol NO = 0.1900 + 0.1900 = 0.3800 mol
<em>We use the reaction to calculate n₂</em>:
2CO(g) + 2NO(g) → 2CO₂(g) + N₂(g)
0.1900 mol CO *
0.1900 mol CO₂
0.1900 mol NO *
0.095 mol N₂
- n₂ = mol CO₂ + mol N₂ = 0.1900 + 0.095 = 0.2850 mol
Calculating V₂:
22.0 L / 0.3800 mol = V₂ / 0.2850 mol
V₂ = 16.5 L
Answer:
THE MOLARITY IS 2.22 MOL/DM3
Explanation:
The solution formed was as a result of dissolving 37.5 g of Na2S in 217 g of water
Relative molecular mass of Na2S = ( 23* 2 + 32) = 78 g/mol
Molarity in g/dm3 is the amount of the substance dissolved in 1000 g or 1 L of the solvent. So we have;
37.5 g of Na2S = 217 g of water
( 37.5 * 1000 / 217 ) g = 1000 g of water
So, 172.81 g/dm3 of the solution
So therefore, molarity in mol/dm3 = mol in g/dm3 / molar mass
Molarity = 172.81 g/dm3 / 78 g/mol
Molarity = 2.22 mol/dm3
The molarity of the solution is 2.22 mol/dm3
The redox reaction given is,
Cu₍s₎ + 2Ag⁺₍aq₎ ---------> Cu²⁺₍aq₎ + 2Ag₍s₎
The equilibrium constant for this reaction is as follow,
Kc = [Cu²⁺][Ag]² / [Cu][Ag⁺]²
Kc = [Cu²⁺] / [Ag⁺]² ∴ {[Cu₍s₎] = 1 & [Ag₍s₎] = 1
So, Above bolded is <span>the concentration equilibrium constant expression for the given reaction.</span>